Synthesis of a novel heterocyclic ring system: imidazo[3,2-*d*] [1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazine

Mohammad Bakherad*, Vahid Keley and Amir H. Amin

Faculty of Chemistry, Shahrood University of Technology, Shahrood, Iran

Synthesis of the novel compounds 3-substituted-6-arylimidazo[3,2-*d*][1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazines was achieved by the reaction of 6-amino-3-substituted-7H-[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazines with 4-substituted-phenacyl bromides in refluxing ethanol.

Keywords: triazolothiadiazines, imidazotriazolothiadiazines, phenacyl bromide, 4-bromophenacyl bromide, 4-nitrophenacyl bromide

1,2,4-Triazoles and the n-bridged heterocycles derived from them are associated with diverse pharmacological activities.^{1,2} Triazolothiadiazine derivatives are of wide interest due to their diverse biological activities and clinical applications.³⁻⁶ Procedures for synthesis of some triazolothiadiazines have been published.⁷⁻¹¹ We have recently reported the synthesis of substituted 7H-[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazines.¹² Armed with this experience, a ready availability of the starting material, and prompted by the various biological properties of fused [1,3,4]thiadiazines, a project aimed at the synthesis of tricyclic compounds derived from triazolo [3,4-*b*][1,3,4]thiadiazines was undertaken. In this paper, we report the synthesis of the novel heterocyclic ring system imidazo[3,2-*d*][1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazine.

6-Amino-3-substituted-7H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazines 2 were synthesised by the reaction of 4-amino-5-substituted-1,2,4-triazole-3-thiones 1 with chloroacetonitrile.^{7,12} Reaction of compound 2 (R = Me) with further chloroacetonitrile in refluxing ethanol led to the production of either 6-aminoacetonitrile-3-methyl-7H-[1,2,4]triazolo[3,4-b] [1,3,4]thiadiazine 3 or N-acetonitrile-6-imino-3-methyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine 4 (Scheme 1). Assignment of the structure of the product was made by its spectral data. The ¹H NMR spectrum of the product was devoid of the signal for the NH₂ group of the precursor at $\delta 7.03^{12}$ and instead, showed an upfield signal at $\delta 5.76$ for the NH (amino) proton, which was exchanged with D₂O, and a singlet at $\delta 4.65$ (2H, N-CH₂) appeared. The IR spectrum of the product showed an NH stretching frequency at 3200 cm⁻¹ and a CN stretching frequency at 2200 cm⁻¹, which confirmed the structure of the product (compound 3).

Subsequently, a number of compounds with the novel 3-substituted-6-aryl imidazo[3,2-d][1,2,4]triazolo[3,4-b][1,3,4]

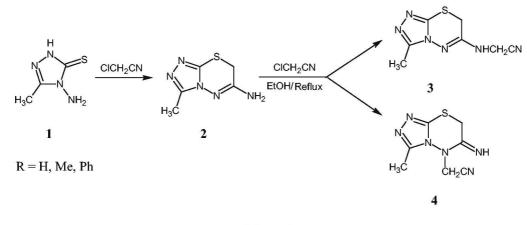
thiadiazine ring system were prepared *via* the route described in Scheme 2.

6-Amino-7H-[1,2,4]triazolo[3,4-*b*][1,3,4]thiadiazine 2 (R = H) was treated with phenacyl bromide 5 (X = H) in ethanol to afford 6-phenylimidazo[3,2-*d*][1,2,4]triazolo [3,4-*b*][1,3,4]thiadiazine 6 (R = H, X = H) in good yield. The structure assigned to compound 6a was substantiated from its elemental analysis and spectral data (Table 1). Its IR spectrum lacked the N-H stretching frequency of its precursor 2 (R = H, X = H). The ¹H NMR spectrum of compound 6a was devoid of the signal at δ 7.10 for NH₂ group and showed an additional set of aromatic protons at δ 7.50–8.10, indicating the construction of an imidazole ring around positions 5 and 6 of the triazolothiadiazine.

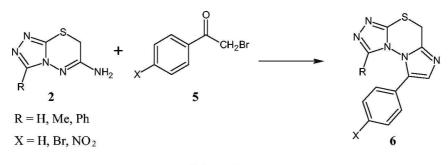
In summary, we have described a convenient one-step synthesis of 6-aryl-3-substituted-imidazo[3,2-d][1,2,4]triazolo [3,4-b][1,3,4]thiadiazine **6** via heterocyclisation of 6-amino-3-substituted-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines **2** with 4-substituted-phenacyl bromides **5**. The generality is shown by synthesis of the other analogues **6b–i** (see Table 1).

Experimental

Melting points were recorded on an electrothermal type 9100 melting point apparatus.


IR spectra were obtained on a 4300 Shimadzu spectrometer as KBr disk.

¹H NMR spectra were recorded on a Bruker BRX 500 AVANCE spectrometer.


Mass spectra were obtained using a Varian CH-7 instrument at 70 eV. Elemental analysis results were obtained using a Thermo Finnigan Flash EA microanalyser.

Preparation of 6-aminoacetonitrile-3-methyl-7H-[1,2,4]triazolo[3,4-b] [1,3,4]thiadiazine **3**

A mixture of 6-amino-3-methyl-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine 2 (R = Me) (10 mmol) and chloroacetonitrile (10 mmol)

Scheme 1

Scheme 2

in absolute ethanol (10 ml) was heated under reflux for 3 hours. After cooling, the precipitate was collected and recrystallised from ethanol. M.p. 240–241 °C. IR (cm⁻¹): 3200 (NH), 2200 (CN). ¹H NMR δ (DMSO-d₆), 2.40 (s, 3H, Me), 3.90 (s, 2H, S–CH₂), 4.65 (s, 2H, N–CH₂), 5.76 (s, 1H, NH). *m/z*: 208 (M), Anal. Calcd for C₇H₈N₆S: C, 40.37; H, 3.87; N, 40.36; S, 15.40. Found: C, 40.18; H, 3.74; N, 40.18; S, 15.25%.

General procedure for the preparation of imidazotriazolothiadiazines 6a-i

A mixture of the triazolothiadiazine 2 (10 mmol) and 4-substitutedphenacyl bromides 5 (10 mmol) in absolute ethanol (15 ml) was heated under reflux for 5-10 hours. After cooling, the precipitate was collected and recrystallised from ethanol/water (data in Table 1).

Table 1 Physical and spectral data for 3-substituted-6-arylimidazo[3,2-d][1,2,4]triazolo[3,4-b][1,3,4]thiadiazine 6a-i

Entry	R	х	Reaction time/h	Yield/%	M.p./ºC	C% Calcd (Found)	H% Calcd (Found)	N% Calcd (Found)	S% Calcd (Found)	Spectral data
6a	Η	H	10	70	260–261	56.47 (56.72)	3.52 (3.66)	27.45 (27.70)	12.54 (12.29)	¹ H NMR: δ (DMSO-d ₆), 3.90 (s, 2H, S–CH ₂), 7.50–8.10 (m, 6H, imidazole and C ₆ H ₅), 9.02 (s, 1H, triazole), m/z : 255 (M)
6b	Η	Br	8	74	282–283	43.24 (43.34)	2.40 (2.53)	21.02 (20.83)	9.60 (9.37)	¹ H NMR: δ (DMSO-d ₆), 4.02 (s, 2H, S–CH ₂), 7.59–8.26 (m, 5H,imidazole and Ar), 9.04 (s, 1H, triazole), m/z : 333 (M), 335 (M + 2)
6c	Н	NO ₂	7	82	285–286	48.00 (48.35)	2.67 (2.81)	28.00 (28.21)	10.67 (10.45)	¹ H NMR: δ (DMSO-d ₆), 3.92 (s, 2H, S–CH ₂), 7.60–8.41 (m, 5H, imidazole and Ar), 9.01 (s, 1H, triazole), <i>m/z</i> : 300 (M)
6d	Me	Н	8	76	239–240	57.99 (58.23)	4.08 (4.20)	26.02 (26.38)	11.89 (12.17)	^{1}H NMR: δ (DMSO-d_6), 2.50 (s, 3H, Me), 3.95 (s, 2H, S–CH_2), 7.52–8.15(m, 6H, imidazole and C_6H_5), m/z : 269 (M)
6e	Me	Br	6	75	277–278	44.95 (44.77)	2.88 (2.67)	20.17 (20.35)	9.22 (9.02)	^{1}H NMR: δ (DMSO-d_{6}), 2.51 (s, 3H, Me), 3.92 (s, 2H, S–CH_2), 7.53–8.21 (m, 5H, imidazole and Ar), 347 (M), 349 (M + 2),
6f	Me	NO ₂	5	88	270–271	49.68 (49.46)	3.18 (3.05)	26.75 (26.92)	10.19 (10.38)	^{1}H NMR: δ (DMSO-d_6), 2.53 (s, 3H, Me), 4.01 (s, 2H, S–CH_2), 7.63–8.36 (m, 5H, imidazole and Ar), m/z : 314 (M)
6g	Ph	Н	6	80	180–181	65.25 (65.52)	3.92 (4.12)	21.14 (21.41)	9.66 (9.83)	¹ H NMR: δ (DMSO-d ₆), 4.01 (s, 2H, S–CH ₂), 7.51–8.10 (m, 11H, imidazole and C ₆ H ₅), <i>m/z</i> : 331 (M)
6h	Ph	Br	6	78	260–261	52.81 (52.83)	2.93 (2.81)	17.11 (17.29)	7.82 (7.65)	¹ H NMR: δ (DMSO-d ₆), 4.03 (s, 2H, S–CH ₂), 7.61–8.22 (m, 10H, imidazole, C ₆ H ₅ and Ar) m/z: 409 (M), 411 (M + 2)
6i	Ph	NO ₂	5	85	270–271	57.44 (57.18)	3.19 (3.04)	22.34 (22.51)	8.51 (8.39)	¹ H NMR: δ (DMSO-d ₆), 4.06 (s, 2H,S–CH ₂), 7.63–8.38 (m, 10H, imidazole, C ₆ H ₅ and Ar), m/z: 376 (M)

Received 27 June 2008; accepted 10 September 2008 Paper 08/0020 <u>doi:10.3184/030823408X371236</u> Published online: 10 November 2008

References

- 1 W.T. Flynn and C. Mason, J. Heterocyl. Chem., 1991, 28, 1121.
- 2 T.H.K. Sasaki, H. Yamamoto and T. Nakayama, J. Heterocyl. Chem., 1991, 28, 257.
- 3 N. Soni, T.N. Bhalla, T.K. Gupta, S.S. Parmar and J.P. Barthwal, *Eur. J. Med. Chem.*, 1985, **20**, 190.
- 4 C.W. Peter, V.B. Richard, P.K. Thomas, D.M. Palmer and C.M. Robert, J. Med. Chem., 1982, 25, 331.

- 5 M. Gall, R.A. Lahti, A.D. Rudzik, D.J. Duchamp, C. Chidester and T. Scahill, J. Med. Chem., 1987, 21, 542.
- 6 M.A. El-Daway, A.M.M.E. Omar, A.M. Ismail and A.A.B. Hazzaa, J. Pharm. Sci., 1983, 72, 45.
- 7 N.F. Eweiss and A.A. Bahajaj, J. Heterocycl. Chem., 1987, 24, 1173.
- 8 B.S. Holla, B.N. Goswami, J.C.S. Kataky and J.N. Barwah, J. Heterocycl.
- Chem., 1986, 23, 1439. 9 B.S. Holla, B. Kalluraya and K.R. Stridhar, Rev. Roum. Chim., 1988, 33,
- 277.
 10 Z.K. Abd El-Samie, M.J. Al-Ashmavi and B. Abd El-Fattah, Egypt J. Pharm. Sci., 1988, 29, 251.
- 11 H.M. Eisa, Sulfur Lett., 1990, 10, 239.
- 12 M.M. Heravi, M. Bakherad, M. Rahimizadeh and M. Bakavoli, Phosphorus, sulfur silicon, 2002, 177, 2403.